NONISOTHERMAL GENERALIZED COUETTE FLOW OF
A FLUID WITH A POWER-LAW RHEOLOGICAL CHARACTERISTIC

S, A. Bostandzhiyan and v, I, Boyarenko UDC 532.543:532.135

The nonisothermal steady flow of a power-law fluid between two parallel plates is analyzed
for different kinds of temperature boundary conditions and, moreover, with energy dissipa-
tion taken into account. It is assumed that the fluidity of the substance is a linear function

of the temperature,

The nonisothermal generalized Couette flow of a Newtonian fluid was studied in [1], The viscosity of
the fluid was assumed to vary with the temperature hyperbolically, i.e., its fluidity was assumed to vary
with the temperature linearly. In the practical case of a molten or dissolved polymer flowing through the
helical channel of a screw pump or extruder it is of interest to analyze the analogous problem involving
non-Newtonian fluids. As is well known, the rheological characteristics of many such substances are rep-
resented by a power law. In this article we will consider the flow of a power-law fluid between two parallel
plates, with one plate moving at a constant velocity and with a pressure gradient in the separating gap. The
temperature is constrained by either of two sets of boundary conditions; a) both plates are maintained at
constant and, in the general case, different temperatures (housing and screw are both thermostaticized),
or b) the upper plate is thermostaticized while the thermal flux at the lower plate is zero (the screw is
thermally insulated). The relation between fluidity and temperature is assumed linear,

We consider the motion of a fluid between two parallel infinitely large plates y = 0 and y =h. The
upper plate is moving at a constant velocity v, along the x-axis while the lower plate remains stationary,
In the gap between the plates there exists a constant pressure gradient dp/dx = A > 0, The plate tempera-
ture Ty and T, are given,

The rheological power law will be defined as

do

—_ 7=l . 1
i k)" ()

It is assumed that coefficient k, which characterizes the fluidity of the substance, is a linear function of the
temperature, i.e.,

E=k 1 +B(T—Ty] (b, B = const). (2)

The flow and the heat transfer, withenergy dissipation taken into account, are represented by the following
system of equations

dv A 42T T dv

I R (3)
This system is to be solved for the following boundary conditions:
v=0, T=T, a y=0 ov=0v, T=T, a y=h {4)
The first equation yields
T = A(y — o), (5)

with the integration constant y, being the ordinate of the plane of zero shearing stress,
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Fig.1l. Curves of % versus 7, for various values -
ofn: 1) n = 0; 2) 1; 3) 3; 4) 5.

With (1) and (5), system (3) and the boundary conditions can be written in the dimensionless form;

dw 1 a d* "

= ==t =008, — L% -1 8=0; 6)
o [ —mo " (N —m,) e + %0 — (
w=0, 9=Bo a_t 1":0; w:l, =1 at T]:l, (7)

The solution to the second of Egs, (6) is expressed in terms of Bessel functions [2] differing in the
sign of the variable (n-ng):

6, =Vn—m, {A;Jm [ 2 - no)";"] + By [ 2 =0 T] ]
(n > M), ' 8
0=V = A1 [2—:‘— (M —%n%] + By, { 2 (no——n)%] B
(n < ), -

with the integration constants A}, Aj, B, B} and with v =n + 3, With the Bessel functions represented as
power series [2], we have

8, = A,F; () + B,G (), 0, = A F; () + ByG, ). (9
Here Ay, A,, By, B, are new integration constants and

o = S at—ngH, G = 36— n0™,

k=0 k=0

Fa(m) = 2 @, (M, — ), G, (n) = 2 b, (g — n)¥%,

k=0 k=0 (10)
5 = (——l)k ) %4k
TR VAl (R
: .
bh _ (__ l)k ) M4

B v —1)(@v—1)... (kv —1)

Depending on the values of parameters ® and o, we cah encounter different situations: g = 0, 0 = 7,
=1, no= 1. In each of these three cases the formulas for the temperatures, the velocities, and the flow
rate will be different. We will consider here all three cases and will determine the ranges of parameter
% and o values within which the different flow modes occur.

Let 0 <7, = 1. Then, from the condifion ‘of equal temperatures and of equal derivatives of the tem-
perature at n = 5, follows A, = —-A, and B, = B;. Thus, ’

6, = A FL () + BiG, (), (> My); 8, = — AF, () + B,G, (), (n<p). (11)
Satisfying the boundary conditions (7) yields

A= 0O =G MO B~ [P (D8 + Fy (0]

B> |

(12)
A= F; (1) Gy (0) + F2(0) Gy (D).
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Fig.2. Temperature profile at different temperature
boundary conditions,

Fig. 3. Curves of flow rate as a function of the pressure

gradient, at various values of n: 1,1")n =1; 2, 2"y n = 3.

Integrating the first of Eqs. (6) with (11) and boundary conditions (7) taken into consideration, we ob-
tain the velocity profile

1
w=1 *;‘ [Afy M)+ Bigy (M1, 2> my),

1
w=—14L0 —BgM]l, @<y

= NV %y vk (y o vkt
f, () %kaHu 1) (1 — )],

@®

= 1_17’1__ 1 YWVetatl __ VE4-ri-F1 (13)
() %vkw“” Mo)Vebrt — (1 — o),

. a
f2 () = 2 m [yt — (my — n)vetetl]
=0 -

— \ bk vktn41 —m\ktn1
g:(u) gvk+n+i[n0 (n, —n) 1.

Satisfying the cendition of equal velocities at n = 7 yields an expression for g
Ay [ (0) + fo (1] + By g1 (ng) — g2 ()] = (14)

An expression for the dimensionless flow rate will be obtained by integrating (13) with respect to n from 0
to 775 and from w, to 1 and adding the resnits;

1 % a :
=1]——m,——1A4 — 11 vh-tn+3 vk4n43
Q o o { 1 E vk+n+3[( o) Mg ]

k=0
S o
B TR (] — . VRtat2 kA2, :
+ B, k;o r— 2[( M) + 1y }} (15)

When 7, = 0, the temperature profile is determined from the first of expressions (11). Having found
the integration constants A, and B, from the boundary conditions at the plates, we obtain
1 1
AlzT[G1(O)_G1(1)eo]1 51: A—[Fl(l)eo_F1(O)]v
! ! {16)
Ay =F ()G, (0)— F, (0) G, (1)

The velocity profile is determined from the first of expressions (13), which has been derived from the bound-
ary condition at the moving plate, The boundary condition at the stationary plate is used for determining N
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When 5, = 1, the temperature profile is determined from the second of expregsions (11), where

. 1 1
A= GO —GM8), B~ e (0).— F, (1) 851,
2’ 2 (19)
A, = F,(0) G, (1) — F, (1) G, (0).
The second of expressions (13) is used for determining the velocity profile. In integrating the respective dif-

ferential equation, use was made of the boundary conditions at the stationary plate, Satisfying the boundary
condition at the moving plate yields an expression for 7

Ay () —Big (1) =a. (20)
The flow rate is
1. - a 1
I Y | . S { VE+n42 _ VEtn4-3 —]yvktnt3
? o ( 1Ekzovk—{—-rl—i~2 Ml vk—)—n+3m° (o —1) ]
— B]. /?1- __A_* {ﬂVk+”+l —_ ___l,._ [nvk+n-l;2 — (7] . I)Vk+"+2] . (21)
sk vt 41" vE+n42 0 0

It is evident from (5) that n, characterizes the shearing stress in the gap and at the plates, If both
plates were stationary (@ = 0) then 7, = 0.5 with the plates at the same temperatures but », = 0.5 with the
plates at different temperatures, within the gap in either case.

It follows from the formulas for A, and B,, also from the expressions for the velocity profile, that
a—xw as A, Ay, and A, approach zero. One may conclude, then, that, as the plate velocity increases, 7,
will increase but remain below some limit defined by the first root of either one of the three equations

A, M) =0, A%, ) =0, A%, ny)=0. (22)

In other words, the shearing stresses at the plates when one moves at an infinitely high velocity will

tend not toward infinity, as in the isothermal problem [3], but to some finite limit, Since the expressions
for A, Ay, and A, do not contain g, hence this limit 7, does not depend on the temperature drop at the bound-
aries,

It is to be noted that the results in [1] apply to the special case n = 1 and the results with » = 0 are
found in {3]. In the case of a pure Couette flow (A = 0), the temperature profile, the velocity profile, and
the flow rate are

8 = C; cos (x*n) -+ C, sin (x2n),

1 .
w= by {C, sin (x*n) 4 C,[1 — cos (x2)]},

Q= —1; {C, [1 —cos (x?)] 4- C, [#* — sin (»?)]}.
ax .

Here 1

i+
_1—8gcos(ed) v . kpnc "

n ’ AJ

C, =896, C ,
! ¢ * sin (%) kohC

)
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and C is the root of the transcendental equation
C, sin (%%) + Cy [1 — cos (%¥)] = ax?.

Let the given temperatures at the upper plate be constant while the lower plate is thermally insu-
lated, Instead of the former boundary conditions (7) regarding the temperature, we now have

The formulas for determining the temperature profile, the velocity profile, and the flow rate in the gap,
also the equations for determining n, will all remain unchanged, but the coefficients A, and B, determined
from the new boundary conditions will be

A%=ﬁ§1,3f»%§1,AzﬂﬂWA@+nmmam 0 << ),

a:i%ﬂ,&=~f¥1,azﬂm@@—awqm,m<m
1 i

4=20 510 s Reaom-ROGO. @>D.

Fy = Do e+ 1) (=%, Gy = 3 byvke(n — g,

k=0 k=0

Fot) = Sy k1) g—ph, Gy () = ) byvk (1, — ).

k=0 k=0

The formulas derived for the case of thermostaticized plates remain valid for a pure Couette flow,
only the coefficients C; and C, change to: C; = 1/cos (¢ and C, = 0.

Numerical calculations according to these formulas have been performed on a computer and the re-
sults are shown in Figs.1-4,

Curves of » as a function of 7y, based on Eqgs. (22), are shown in Fig. la for various values of n. As
point (%, ng) approaches such a curve, parameter ¢—-», From the expressions for A, Ag, and Ayit ap-
pears that, at a fixed value of %, these quantities are functions of , symmetrical with respect to 7g = 0.5,
Therefore, the points on curves symmetrical to those in Fig, la with respect to the ordinate 7, = 0.5 will
also be roots of Egs. (22). As the point with coordinates (%,7y) approaches these curves, parameter o
— +o, The limit approached by the shearing stress at o— x+ rises ag ®—0.

A peculiar feature here is the intersection of curves plotted for different values of n. Forn =1,
curve 2 is identical to the analogous curve in [1] after correspondence between the respective systems of
coordinates have been established.

The intersection points of the curves with the ordinate 5, = 0.5 yield the values % = n,, which are
critical. For all n < », there exists a steady flow mode, for all » = %, a steady flow mode is impossible
and a loss of thermal stability occurs. As n—n,, the temperatures and the velocities rise rapidly. The
critical ., is a monotonically increasing function of n and it depends neither on the temperature drop at
the plates nor on the velocity of the moving plate,

Curves of % (ng at various values of n are shown in Fig, 1b for the case of a thermally insulated
lower plate. Here the curves are not symmetrical and, within the 0 < Mo < 0.5 range, they pass through a
maximum which determines the critical %, value, The left-hand branches of these curves determine the
limiting values of 7y when o — +, while the right-hand branches determire the limiting values of 7, when
a—-x, Asn increases, the slope of these curves as well as the value of ", increase and, at the same time
the maximum of each curve approaches the ordinate 19 = 0.5. Curve 2 is identical to curve 1 in Fig,2 in 1],

’

We will now determine the ranges of parameter » and « values within which the various flow modes
occur. The analysis will be applied to the case of one thermally insulated plate, Steady flow is possible if
n <n,. Inserting n,= 0 and 5y = 1 into the equation A(x, ng = 0 yields respectively two values: n,and w4,
o >%y. I < ny, then all three flow modes are possible: 7, = 0, 0 <7, =<1, and ng= 1, Atagiven n < ny,
inserting into Eq. (14) (but with coefficients Ajand By corresponding to the case of one thermally insulated
plate) ny = 0 and 7, = 1 will yield respectively two values; agand ay:
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These flow modes will occur when, respectively, ¢ =y, oy = a = oy and @ = oy,

When ®y =% = n, only two flow modes are possible: with 5, within the gap and n, = 0; moreover,
Mo = 0 when « = «; At all other values of o, positive as well as negative, 0 =5y = 1. I ny=n < Ny,
then 7y occurs within the gap at auy value of a.

In the case of thermostaticized plates, »y = %, owing to the symmetry of the curves and, therefore:
only one flow mode with 0 =< 5y = 1 occurs when ®; = % < %, but all three flow modes (with ny = 0, 0 = 7,
=1, and 5y = 1) occur when, respectively, o = o, oy = o = @y, and @ = o if ®» = where ¢jand o, are
determined from (24).

When a = 0 (stationary plates), 0 <n, < 1 and, therefore, always o, < 0. This meang that the flow
mode with 7, = 1 can occur only at negative values of o, It must be emphasized here that @ > 0 in screw
pumps and extruders, For this reason, these devices can operate in only two modes: ny = 0and 0 = ;< 1.

The temperature profile in the gap between two plates is shown in Fig,2 for n = 3, & = 1,34, and »
=1.22. The solid curve represents the case of both thermostaticized plates at the same temperature (9,
= 1), the dashed curve corresponds to the case where the lower plate is thermally insulated.

According to the diagram, the temperature profile between two thermostaticized plates passes
through a maximum, The asymmetry of the solid curve is explained by the asymmetry of the velocity pro-
file in a generalized Couette flow. When the lower plate is thermally insulated, then, not surprisingly, the
maximum temperature is reached at the lower plate.

The relation between the dimensionless flow rate @ and the dimensionless pressure gradient a = A
/Ap, (Ap denoting the maximum pressure gradient in an isothermal flow (« = 0) of a Newtonian fluid (n
= 1), which occurs at a zero flow rate) has been analyzed for various values of the parameters. Parameters
a and » can be expressed as follows:

41
o = Qpfat, %= Kyl 4 ,
where
S S 10 el
ki (AR A

Curves of Q (@) at ayy, = 0.168 and %y, = 2.52 in Fig.3 for two values of n. As n increases, the flow
rate increases too and at a rate which becomes higher at higher values of ¢, Characteristic here is the in-
tersection of solid and dashed lines. To each such pair of curves there corresponds a value a = a, which
is the abscissa of the intersection point. When a < a,, the flow rate under adiabatic conditions at the lower
plate is higher than under isothermal conditions, and conversely when a > a.

The effect of the dissipation parameter n, on the Q (@) relation is shown in Fig.4 for the case of a
thermally insulated lower plate. According to the diagram, this effect on the flow rate is strongest when
the extruder screw operates near free flow or near shutoff, An increase in P, IOOreover, causes an in-
crease in the flow rate when g is small and a decrease in the flow rate when a is sufficiently large, In the
case of thermostaticized plates, these curves follow the same trend.

NOTATION
h ig the distance between the plates;
y is the coordinate;
Yo is the coordinate of the point where the shearing stress is zero;
v is the velocity;

Vo is the velocity of the upper plate;
dp/dx =A  is the pressure gradient;
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n=y/h, W=v/vy 6=1+B(T-Ty)

a =vy/kh (AL, = ko8 (AL Hh2 /AT, 6p=1 +8(T{~Ty)
Yoy

is the shearing siress;

are the rheological parameters;

is the thermal conductivity of the fluid;

is the mechanical equivalent of heat;

are the temperature of the fluid, of the lower
plate, and of the upper plate respectively;

is the dimensionless flow rate;

are the dimensionless coordinate, velocity, and
temperature respectively;

are the dimensionless parameters;

is the critical value of %.

LITERATURE CITED

1. 5. A. Bostandzhiyan and A, M. Stolin, Inzh, Fiz. Zh,, 17, No.1 (1969).
2. E. Jahnke and F. Emde, Tables of Functions with Formulas and Curves [Russian translation], Fiz-

matgiz, Moscow (1959),

3. S. A. Bostandzhiyan and A. M. Stolin, Izv. Akad. Nauk SSSR, Mekhanika, 1, 185 (1965).

615



